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Abstract
In this paper we provide a complete description of the first integrals of the
classical Einstein–Yang–Mills equations that can be described by formal series.
As a corollary we also obtain a complete description of the analytic first integrals
in a neighbourhood of the origin.

PACS number:
Mathematics Subject Classification: 34C35, 34D30

1. Introduction to the problem

The static, spherically symmetric Einstein–Yang–Mills equations [1–3, 12, 13] with a
cosmological constant a ∈ R are given by the differential system

ṙ = rN, Ẇ = rU,

Ṅ = (k − N)N − 2U 2, k̇ = s(1 − 2ar2) + 2U 2 − k2,

U̇ = sWT + (N − k)U, Ṫ = 2UW − NT,

(1)

where r,W,N, k,U, T ∈ R
6 and s ∈ {−1; 1}, and the dot denotes a derivative with respect to

the space–time variable t.
Let

f = 2kN − N2 − 2U 2 − s(1 − T 2 − ar2). (2)

Then, over the solutions (r(t),W(t), N(t), k(t), U(t), T (t)) of system (1) it holds

df (t)

dt
= −2N(t)f (t).

Therefore, we obtain that f = 0 is an invariant hypersurface under the flow of system (1);
i.e., if a solution of system (1) has a point on f = 0 the whole solution is contained in f = 0.
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For physical reasons (see again [2]), it is interesting to study the solutions of (1) over the
hypersurface f = 0. Hence, from (2), the solutions of system (1) on f = 0 satisfy the
equality

s(1 − ar2) = 2kN − N2 + sT 2 − 2U 2. (3)

Thus, defining the variables x1 = r, x2 = W, x3 = N, x4 = k, x5 = U, x6 = T , and taking
into account (3), we obtain that system (1) on f = 0 is equivalent to the homogeneous
polynomial differential system

ẋ1 = X1(x1, . . . , x6) = x1x3,

ẋ2 = X2(x1, . . . , x6) = x1x5,

ẋ3 = X3(x1, . . . , x6) = (x4 − x3)x3 − 2x2
5 ,

ẋ4 = X4(x1, . . . , x6) = −(x4 − x3)
2 + s

(−ax2
1 + x2

6

)
,

ẋ5 = X5(x1, . . . , x6) = sx2x6 + (x3 − x4)x5,

ẋ6 = X6(x1, . . . , x6) = 2x2x5 − x3x6,

(4)

of degree 2 in R
6 depending on the real parameter a. Furthermore, taking into account that s

is a constant, we can rewrite the hypersurface f = 0 in the new variables as F = s, where

F = 2x3x4 − x2
3 + s

(
ax2

1 + x2
6

) − 2x2
5 . (5)

Clearly, by construction, F is a homogeneous first integral of degree 2 of system (4).
Furthermore, it is easy to obtain that

G = x2
2 − x1x6 (6)

is another homogeneous first integral of degree 2 of system (4).
The aim of this paper is to study the existence of formal series first integrals of

system (4) that are different from F and G. The use of formal series in the study of differential
equations and, in particular, in the existence of their first integrals is a classical tool. Indeed,
for instance, solutions described by formal series around singularities have been studied by
Seidenberg [11], the existence of first integrals given by formal series has been studied by
Nemytskii and Stepanov [10], Moussu [9], . . . . However, the greatest success in using formal
series to study differential equations has been achieved by Écalle [5] who used them to prove
Dulac’s conjecture.

A formal series first integral f = f (x1, . . . , x6) of system (4) is a formal power series in
the variables x1, . . . , x6 such that

6∑
k=1

∂f

∂xk

Xk(x1, . . . , x6) = 0. (7)

In what follows when we talk about formal power series we only say formal series.
The first main result of this paper is

Theorem 1. All formal series first integrals of system (4) are formal series in the variables F
and G.

Here an analytic first integral of system (4) is an analytic function which is constant over
the trajectories of system (4). The second main result of this paper is

Theorem 2. All analytic first integrals of the system (4) in a neighbourhood of the origin are
analytic functions in the variables F and G.
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These kinds of integrability studied in this paper for the EYM system have been considered
by many authors in very similar interesting physical systems, such as for instance the Bianchi
IX system or the mixmaster model: see, for instance, [4, 6, 8].

The paper is organized as follows. In section 2 we state some preliminary results that
will be used throughout the paper. In section 3 we study the formal series first integrals of the
EYM system (4) restricted to x1 = x2 = 0, and in section 4 we provide the proof of theorems 1
and 2.

The method for proving these theorems is general and can be used in many other
differential systems (mainly polynomial differential systems) for studying their integrability.

2. Preliminary results

We state some results that we shall use later on.

Lemma 3. Let x and y be one-dimensional variables. Given a formal series f (x), there exists
a formal series g(x, y) such that

f (x) + f (y) = f (x + y) + f (0) − xyg(x, y).

Proof. We write f (z) = f (0) +
∞∑

j=1

fjz
j . Then, using Newton’s binomial formula,

f (x + y) + f (0) = 2f (0) +
∞∑

j=1

fj (x + y)j = 2f (0) +
∞∑

j=1

fj

j∑
k=0

(
j

k

)
xkyj−k

= f (x) + f (y) + xy

∞∑
j=1

fj

j−2∑
k=0

(
j

k + 1

)
xkyj−2−k

= f (x) + f (y) + xyg(x, y). �

Lemma 4. Let xk be one-dimensional variables for k = 1, . . . , n with n > 1. Let
f = f (x1, . . . , xn) be a formal series such that in xl = xj , j �= l, j, l ∈ {1, . . . , n},
f (x1, . . . , xn)|xl=xj

= f , where f is a formal series in the variables x1, . . . , xl−1, xl+1, . . . , xn.
Then, there exists a formal series g = g(x1, . . . , xn) such that f = f + (xl − xj )g.

Proof. We denote by Z
+ the set of all non-negative integers. We write

f =
∑

(k1,...,kn)∈(Z+)n

fk1,...,kn
x

k1
1 · · · xkn

n .

Without loss of generality we can assume l = 1 and j = 2. Then, writing x1 = x2 + (x1 − x2),
and using Newton’s binomial formula, we have

f =
∑

(k1,...,kn)∈(Z+)n

fk1,...,kn
(x2 + (x1 − x2))

k1x
k2
2 · · · xkn

n

=
∑

(k1,...,kn)∈(Z+)n

fk1,...,kn

k1∑
j=0

(
k1

j

)
x

j

2 (x1 − x2)
k1−j x

k2
2 · · · xkn

n

=
∑

(k1,...,kn)∈(Z+)n

fk1,...,kn
x

k1
2 x

k2
2 · · · xkn

n
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+ (x1 − x2)
∑

(k1,...,kn)∈(Z+)n

fk1,...,kn

k1−1∑
j=0

(
k1

j

)
x

j

2 (x1 − x2)
k1−j−1x

k2
2 · · · xkn

n

= f (x2, x2, . . . , xn) + (x1 − x2)g(x1, . . . , xn) = f + (x1 − x2)g,

which finishes the proof of the lemma. �

Let τ and σ be defined by

τ : (x1, x2, x3, x4, x5, x6, t) → (−x1, x2, x3, x4,−x5,−x6, t),

σ : (x1, x2, x3, x4, x5, x6, t) → (x1,−x2,−x3,−x4, x5, x6,−t),

and note that system (4) is invariant by these two symmetries.

Proposition 5. Let g = g(x1, x2, x3, x4, x5, x6) be a formal series first integral of system (4).
Then,

(i) f = (g · τ(g)) · σ(g · τ(g)) is another first integral of system (4) invariant by τ and σ ;
(ii) the monomials of f are of the form x

l1
1 x

l2
2 x

l3
3 x

l4
4 x

l5
5 x

l6
6 with l1 + l5 + l6 and l2 + l3 + l4 even.

Proof. The first statement of the proposition follows taking into account that system (4) is
invariant under τ and σ , and that τ 2 = σ 2 = Id.

To prove the second statement we write f in formal series

f =
∑

(l1,l2,l3,l4,l5,l6)∈(Z+)6

fl1,l2,l3,l4,l5,l6x
l1
1 x

l2
2 x

l3
3 x

l4
4 x

l5
5 x

l6
6 .

Then, since τ(f ) = f , i.e., f − τ(f ) = 0, it holds∑
(l1,l2,l3,l4,l5,l6)∈(Z+)6

(1 − (−1)l1+l5+l6)fl1,l2,l3,l4,l5,l6x
l1
1 x

l2
2 x

l3
3 x

l4
4 x

l5
5 x

l6
6 = 0,

which clearly implies that l1 + l5 + l6 is even. In a similar way, using that f − σ(f ) = 0 we
get that l2 + l3 + l4 is even. �

We shall need the following preliminary result. We consider the autonomous differential
system

ẋ = f(x), x = (x1, . . . , xn) ∈ C
n, (8)

where f is a vector-valued function of dimension n satisfying f(0) = 0. As usual, C denotes
the complex field. We denote by A the Jacobian matrix ∂f/∂x(0) of the vector field f(x) at
x = 0. Then, the following two results are proved in theorems 1 and 2 of [7], respectively.
Although in [7], theorem 2 is stated for analytic series, its proof is also valid for formal series
as stated in theorem 7.

Theorem 6. Assume that the eigenvalues λ1, λ2, . . . , λn of A satisfy the conditions: λ1 = 0
and

∑n
i=2 kiλi �= 0 for any ki ∈ Z

+ and
∑n

i=2 ki � 1. For n > 2, system (8) has a formal
series first integral in a neighbourhood of x = 0 if and only if the singular point x = 0 is not
isolated.

Theorem 7. If the eigenvalues λ1, λ2, . . . , λn of A satisfy the conditions:
∑n

i=1 kiλi �= 0, for
any ki ∈ Z

+ and
∑n

i=1 ki � 1; then, system (8) does not have any formal series first integral
in a neighbourhood of x = 0.
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3. First integrals of system (4) restricted to x1 = x2 = 0

We consider the system (4) restricted to x1 = x2 = 0, that is

ẋ3 = (x4 − x3)x3 − 2x2
5 , ẋ4 = −(x4 − x3)

2 + sx2
6 ,

ẋ5 = (x3 − x4)x5, ẋ6 = −x3x6.
(9)

The objective of this section is to study the formal series first integrals of system (9).

Proposition 8. The unique formal series first integrals of system (9) invariant by τ and σ are
formal series in the variable F , where F = x3(2x4 − x3) − 2x2

5 + sx2
6 .

To prove proposition 8 we introduce and prove some auxiliary results.

Lemma 9. The unique formal series first integrals invariant by τ and σ of system (9) restricted
to x5 = 0 are formal series in the variable F̃ , where F̃ = x3(2x4 − x3) + sx2

6 .

Proof. Since F̃ is a first integral of system (9), restricted to x5 = 0, computing x6 from
F̃ (x3, x4, x6) = f̃ , system (9) restricted to x5 = 0 and to the level set F̃ = f̃ becomes

ẋ3 = (x4 − x3)x3, ẋ4 = f̃ − x2
4 . (10)

We claim that system (10) has no formal series first integrals in a neighbourhood of the

singular point p = (x3, x4) =
√

f̃ (1, 1). Indeed, since the eigenvalues of the Jacobian matrix

of system (10) at the singular point p are −
√

f̃ and −2
√

f̃ , the claim follows immediately
from theorem 7.

Now, we proceed by contradiction. Assume that system (9) has a formal series first
integral H invariant by τ and σ which is not a formal series in F̃ . Repeating the arguments of
the proof of proposition 5 for system (4) restricted to x1 = x2 = x5 = 0, the restriction H̃ of H
to this system only contains monomials x

l3
3 x

l4
4 x

l6
6 with l6 even. Substituting into H̃ the variable

x6 from F̃ (x3, x4, x6) = f̃ (that is, x2
6 = f̃ − x3(2x4 − x3)), then H̃ becomes a formal series

first integral of system (10), and consequently there is a formal series first integral defined in

a neighbourhood of the singular point p = (x3, x4) =
√

f̃ (1, 1), in contradiction with the
statement of the claim proved above. �

Lemma 10. The unique formal series first integrals invariant by τ and σ of system (9)
restricted to x6 = 0 are formal series in the variable F̂ , where F̂ = x3(2x4 − x3) − 2x2

5 .

Proof. Since F̂ is a first integral of system (9) restricted to x6 = 0, computing x5 from
F̂ (x3, x4, x5) = f̂ , system (9) restricted to x6 = 0 and to the level set F̂ = f̂ becomes

ẋ3 = f̂ − x4x3, ẋ4 = −(x4 − x3)
2. (11)

Then, since the eigenvalues of the Jacobian matrix of system (11) at the singular point

p = (x3, x4) =
√

f̃ (1, 1) are 0 and −
√

f̃ , from theorem 6 we get that system (11) does not
have formal series first integrals in a neighbourhood of p. Now, proceeding as in the last part
of the proof of lemma 9 we obtain the desired statement. �

Lemma 11. Let f = f (x3, x4) be a formal series satisfying

(x4 − x3)

(
x3

∂f

∂x3
− (x4 − x3)

∂f

∂x4

)
= (ax4 + bx3)f (12)

with a, b ∈ Z, and a + b �= −n for all n ∈ Z
+. Then, f = 0.
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Proof. We proceed by contradiction. We assume f �= 0 and we consider two different cases.

Case 1. f is not divisible by x4 − x3. In this case, we reach a contradiction from (12) taking
into account that, by hypothesis, x4 − x3 does not divide x4 + bx3; otherwise a + b = 0.

Case 2. f is divisible by x4 − x3. In this case, we write f = (x4 − x3)
mh with m � 1, and

h = h(x3, x4) is a formal series which is not divisible by x4 − x3. Furthermore, from (12), h
satisfies

(x4 − x3)

(
x3

∂h

∂x3
− (x4 − x3)

∂h

∂x4

)
= ((a + m)x4 + bx3).

Then, taking into account that by hypothesis x4 −x3 does not divide (a +m)x4 +bx3 (otherwise
a + b = −m), we get that h must be divisible by x4 − x3, a contradiction. �

Proposition 12. Let f = f (x3, x4, x5, x6) be a formal series satisfying(
(x4 − x3)x3 − 2x2

5

) ∂f

∂x3
+

(−(x4 − x3)
2 + sx2

6

) ∂f

∂x4
+ (x3 − x4)x5

∂f

∂x5
− x3x6

∂f

∂x6
= lx4f,

(13)

where l is a positive integer. Then, f = x5x6g for some formal series g = g(x3, x4, x5, x6).

Proof. We write f as a formal series in the variable x5, then

f =
∑
k�0

fkx
k
5 , where fk = fk(x3, x4, x6) are formal series.

We first prove that f0 = 0. Suppose that f0 �= 0 and we write f0 as a formal series in the
variables x6, then

f0 =
∑
k�0

f0,kx
k
6 , where f0,k = f0,k(x3, x4) are formal series.

We consider two different cases.

Case 1. f0 is not divisible by x6. In this case f0,0 �= 0 and f0,0 satisfies (13) restricted to
x5 = x6 = 0; i.e., it satisfies equation (12) with a = l � 1 and b = 0. Then, from lemma 11
we get that f0,0 = 0, a contradiction.

Case 2. f0 is divisible by x6. In this case we write f0 = xm
6 g0 with m � 1 and

g0 = g0(x3, x4, x6) is a formal series which is not divisible by x6. Furthermore, from
(13) restricted to x5 = 0 we get that g0 satisfies

(x4 − x3)x3
∂g0

∂x3
+

(−(x4 − x3)
2 + sx2

6

) ∂g0

∂x4
− x3x6

∂g0

∂x6
= (lx4 + mx3)g0. (14)

We write g0 as a formal series in the variable x6, then

g0 =
∑
k�0

g0,kx
k
6 , where g0,k = g0,k(x3, x4) are formal series.

Then, since g0 is not divisible by x6, we have g0,0 �= 0. However, g0,0 satisfies (14) restricted
to x6 = 0. That is, it satisfies (12) with a = l � 1 and b = m � 1. Then, from lemma 11 we
get g0,0 = 0, a contradiction.

Thus, f0 = 0 and hence f = x5f for some formal series f = f (x3, x4, x5, x6) that
satisfies, after dividing by x5,(
(x4 − x3)x3 − 2x2

5

) ∂f

∂x3
+

(−(x4 − x3)
2 + sx2

6

) ∂f

∂x4

+ (x3 − x4)x5
∂f

∂x5
− x3x6

∂f

∂x6
= ((l + 1)x4 − x3)f . (15)
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Now, we write f as a formal series in the variable x6 then

f =
∑
k�0

f kx
k
6 , where f k = f k(x3, x4, x5) are formal series.

The proof of the proposition will be finished if we prove that f 0 = 0. Again we will proceed
by contradiction. We assume f 0 �= 0 and we write it as a formal series in the variables x5,
then

f 0 =
∑
k�0

f 0,kx
k
5 , where f 0,k = f 0,k(x3, x4) are formal series.

We consider two different cases.

Case a. f 0 is not divisible by x5. In this case f 0,0 �= 0 and f 0,0 satisfies (15) restricted to
x5 = x6 = 0; i.e., it satisfies equation (12) with a = l + 1 � 2 and b = −1. Then, from lemma
11 we get that f 0,0 = 0, a contradiction.

Case b. f 0 is divisible by x5. In this case we write f 0 = xm
5 g0 with m � 1 and

g0 = g0(x3, x4, x5) is a formal series which is not divisible by x5. Furthermore, from
(15) restricted to x6 = 0 we get that g0 satisfies(
(x4 − x3)x3 − 2x2

5

)∂g0

∂x3
+

(−(x4 − x3)
2 + sx2

6

)∂g0

∂x4
+ (x3 − x5)x5

∂g0

∂x5

= ((l + m + 1)x4 − (m + 1)x3)g0. (16)

We write g0 as a formal series in the variable x5, then

g0 =
∑
k�0

g0,kx
k
5 , where g0,k = g0,k(x3, x4) are formal series.

Then, since g0 is not divisible by x5, we have g0,0 �= 0. However, g0,0 satisfies (16) restricted
to x5 = 0. That is, it satisfies (12) with a = l + m + 1 and b = −m− 1. Then, from lemma 11,
we get g0,0 = 0, a contradiction. �

Proof of proposition 8. Let f be a formal series first integral of system (9). Now, if we write
f as a formal series in the variable x5, then

f =
∑
k�0

f̃ kx
k
5 , where f̃ k = f̃ k(x3, x4, x6) are formal series.

Then, f̃ 0 is a formal series first integral of system (9) restricted to x5 = 0. Therefore, from
lemma 9, f̃ 0 = f̃ 0(F̃ ), and hence f = f̃ 0(F̃ ) + x5h, with h = h(x3, x4, x5, x6) a formal
series. Furthermore, since F = F̃ − 2x2

5 , applying lemma 3 with x = F̃ and y = −2x5,
we get

f = f̃ 0(F ) + x5h1, where h1 = h1(x3, x4, x5, x6) a formal series. (17)

Now, we write f as a formal series in the variable x6, i.e.

f =
∑
k�0

f̂ kx
k
6 , where f̂ k = f̂ k(x3, x4, x5) are formal series.

By lemma 10, f̂ 0 = f̂ 0(F̂ ). Moreover, since F = F̂ + sx2
6 , by lemma 3 with x = F̂ and

y = sx2
6 , we get

f = f̂ 0(F ) + x6h2, where h2 = h2(x3, x4, x5) a formal series. (18)

Imposing that the two equations for f , (17) and (18), must be equal and restricting them
to x5 = x6 = 0, we obtain f̂ 0(x3(2x4 − x3)) = f̃ 0(x3(2x4 − x3)); i.e., f̂ 0 = f̃ 0. Thus,
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x5h1 = x6h2. This implies that there exists a formal series h3 = h3(x3, x4, x5, x6) such that
h1 = x6h3 and h2 = x5h6. Then, from (17)

f = f̃ 0(F ) + x5x6h3. (19)

The proof of the proposition will follow from (19) if we show that h3 = 0. We will proceed
by contradiction. We assume h3 �= 0 and we consider two different cases.

Case 1. h3 is not divisible by x5x6. In this case since F and f are formal series first integrals
of system (9), we get that h3 is also a formal series first integral. Therefore, h3 satisfies, after
dividing by x5x6, (13) with l = 1. Then, from proposition 12 we get that h3 is divisible by
x5x6, a contradiction.

Case 2. h3 is divisible by x5x6. In this case, we write h3 = (x5x6)
mh4 with m � 1 and h4 �= 0

is a formal series which is not divisible by x5x6. Then, imposing that f is a formal series first
integral of system (9), we get that h4 satisfies (13) with l = m. Then, from proposition 12 we
get that h4 is divisible by x5x6, a contradiction. �

4. Proof of the main results

Now, we will prove our main results. We first state and prove some preliminary results.

Proposition 13. Let f be a formal series first integral of system (4) invariant by τ and σ .
Then,

f =
∑
k,l�0

ck,lG
kF l + x1h, (20)

where ck,l are constants, F and G are introduced in (5) and (6), and h is a formal series in the
variables x1, . . . , x6.

Proof. First, we claim that any formal series first integral of system (4) restricted to x1 = 0
can be written as

f =
∑
k,l�0

ck,lx
2k
2 F

l
, where ck,l are constants. (21)

To prove the claim (21), we write any formal series first integral of system (4) restricted to
x1 = 0, f , in formal series in the variable x2 as

f =
∑
k�0

fkx
k
2 , fk = fk(x3, x4, x5, x6) are formal series. (22)

Each coefficient fk is a first integral of system (4) restricted to x1 = x2 = 0 (that is of
system (9). Indeed, using that f and x2 are first integrals of system (4) restricted to x1 = 0,
we get that f0 is a first integral. Now, we proceed by induction, we assume fl, 0 � l � j is
a first integral of system (9) and we will prove it for l = j + 1. By induction hypothesis and
since f and x2 are first integrals we get

0 =
∑

l�j+1

dfl

dt
xl

2 = x
j+1
2

∑
l�j+1

dfl

dt
x

l−j−1
2 , (23)

where the derivative is evaluated along a solution of system (9). Restricting (23) to x2 = 0,
after simplifying by x

j+1
2 , we get dfj+1/dt = 0, that is, fj+1 is a first integral of system (9).

Thus, by induction we have proved that each coefficient fk is a first integral of system (9).
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From proposition 8, we have that fk = fk(F ) for k � 0 is a formal series in the variable F .
Thus, from (22), we get

f =
∑
k,l�0

fk,lx
k
2F l. (24)

Furthermore, since f is invariant by σ , from proposition 5, f only contain monomials
x

l1
1 x

l2
2 x

l3
3 x

l4
4 x

l5
5 x

l6
6 with l2 + l3 + l4 even. Since F only contain monomials x

l3
3 x

l4
4 x

l5
5 x

l6
6 with

l3 + l4 even, it follows from (24) that k must be even. This finishes the proof of the claim (21).
Let now f be a formal series first integral of system (4). Then, we write f in formal

series in the variable x1 as

f =
∑
k�0

fkx
k
1 , fk = fk(x2, x3, x4, x5, x6) are formal series.

Clearly, f0 is a formal series first integral of system (4) restricted to x1 = 0. From (21) we get
that f0 = ∑

k,l�0 ck,lx
2k
2 F l . We substitute F = F − sax2

1 and x2
2 = G + x1x6 into f0 and we

get

f0 =
∑
k,l�0

ck,lG
kF l + x1g, with g = g(x1, x2, x3, x4, x5, x6)

a formal series. Then, we can write f as

f =
∑
k,l�0

ck,lG
kF l + x1h, with h = h(x1, x2, x3, x4, x5, x6)

a formal series equal to g +
∑

k�1 fkx
k−1
1 . Thus, the proposition is proved. �

We write the formal series h appearing in proposition 13 in series in the variable x1 as

h =
∑
k�0

hkx
k
1 , hk = hk(x2, x3, x4, x5, x6) are formal series.

Since f, F and G are first integrals for system (4), taking derivatives with respect to t in (20)
we have that, after dividing by x1, h must satisfy

x1x3
∂h

∂x1
+ x1x5

∂h

∂x2
+

[
(x4 − x3)x3 − 2x2

5

] ∂h

∂x3
+

[−(x4 − x3)
2 + s

(−ax2
1 + x2

6

)] ∂h

∂x4

+ [sx2x6 + (x3 − x4)x5]
∂h

∂x5
+ [2x2x5 − x3x6]

∂h

∂x6
= −x3h. (25)

Then, evaluating (25) on x1 = 0, we obtain that h0 satisfies[
(x4 − x3)x3 − 2x2

5

]∂h0

∂x3
+

[−(x4 − x3)
2 + sx2

6

]∂h0

∂x4

+ [sx2x6 + (x3 − x4)x5]
∂h0

∂x5
+ [2x2x5 − x3x6]

∂h0

∂x6
= −x3h0. (26)

Lemma 14. The unique formal series h0 = h0(x2, x3, x4, x5, x6) invariant by τ and σ

satisfying (26) is h0 = 0.

For clarity, in the proof of lemma 14, we will state and prove an auxiliary result that will
be used therein.

Lemma 15. Let g = g(x3, x4, x5, x6) be a formal series invariant by τ and σ satisfying[
(x4 − x3)x3 − 2x2

5

] ∂g

∂x3
+

[−(x4 − x3)
2 + sx2

6

] ∂g

∂x4
+ (x3 − x4)x5

∂g

∂x5
− x3x6

∂g

∂x6
= −x3g.

(27)

Then, g = 0.



8164 J Llibre and C Valls

Proof. We will first prove that g is divisible by x6. We write g in formal series in the variable
x6 as

g =
∑
k�0

gkx
k
6 , gk = gk(x3, x4, x5) are formal series.

We will show that g0 = 0. Before proving it, we show that this will finish the proof of the
lemma. Indeed, if g0 = 0, then g = x6h where h = h(x3, x4, x5, x6) is a formal series. Then,
imposing that g satisfies (27) we obtain that h satisfies[
(x4 − x3)x3 − 2x2

5

] ∂h

∂x3
+

[−(x4 − x3)
2 + sx2

6

] ∂h

∂x4
+ (x3 − x4)x5

∂h

∂x5
− x3x6

∂h

∂x6
= 0.

Thus, h is a formal series first integral of system (9). From proposition 8 we get that h = h(F )

is a formal series in F and then, g = x6h(F ). Furthermore, since g is invariant by τ1,
from proposition 5 (restricted to x1 = x2 = 0) we get that g must contain monomials of the
form x

l3
3 x

l4
4 x

l5
5 x

l6
6 with l5 + l6 even. This is impossible unless g = 0, because F only contain

monomials of the form x
l3
3 x

l4
4 x

l5
5 x

l6
6 with l5 + l6 even.

In short, to prove the lemma it remains to prove that g0 = 0. We write g0 in formal series
in the variable x5 as

g0 =
∑
l�0

g0,lx
l
5, g0,l = g0,l(x3, x4) are formal series. (28)

From proposition 5 on x1 = x2 = x6 = 0 we get that g0 only contains monomials x
l3
3 x

l4
4 x

l5
5

with l5 even.
Restricting (27) to x5 = x6 = 0 we get that g0,0 must satisfy

(x4 − x3)

[
x3

∂g0,0

∂x3
− (x4 − x3)

∂g0,0

∂x4

]
= −x3g0,0. (29)

So, g0,0 = (x4 − x3)f1(x3, x4). Substituting g0,0 into (29) and simplifying we obtain that f1

must satisfy

x3
∂f1

∂x3
− (x4 − x3)

∂f1

∂x4
= f1.

The general solution of this linear partial differential equation is f1 = x3f2(x3(2x4 − x3))

where f2 is an arbitrary function, for us a formal series in the variable x3(2x4 − x3). So, we
can write

g0,0 = x3(x3 − x4)
∑
k�0

ck(x3(2x4 − x3))
k.

Since x3(2x4 − x3) = F̂ + 2x2
5 , we get that g0,0 = x3(x3 − x4)

∑
k�0 ckF̂

k + x2
5f3(x3, x4, x5).

Now, using the formal series (28) and the fact that its power series in x5 are even, we obtain

g0 = x3(x3 − x4)
∑
k�0

ckF̂
k + x2

5f4, f4 = f4(x3, x4, x5) are formal series. (30)

Now we consider g0 �= 0 and we will reach a contradiction. We consider two cases.

Case 1. g0 is not divisible by F̂ . Restricting g0 to the invariant set {F̂ = 0} or equivalently{
2x2

5 = x3(2x4 − x3)
}
, and then imposing that g0 satisfies (27) restricted to x6 = 0 we get,

after dividing by x2
5 and taking into account that F̂ is a formal series first integral of this

system, that

−2(2x3 − x4)c0 − x3x4
∂f 4

∂x3
− (x4 − x3)

2 ∂f 4

∂x4
= (2x4 − 3x3)f 4, (31)
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where f 4 = f 4(x3, x4) denotes the restriction of f4 to {F̂ = 0}. Now, if we restrict (31) to
x3 = 0 and denote by f̃ 4 the restriction of f 4 to x3 = 0, then

2c0 − x4
df̃ 4

dx4
= 2f̃ 4.

The general solution of this differential equation is f̃ 4(x4) = c0 + c1
/
x2

4 . Since f̃ 4 is a
formal series, we get f̃ 4 = c0. Then, from lemma 4, f 4 = c0 + x3f5, for some formal series
f5 = f5(x3, x4). In an analogous way, restricting equation (31) to x3 = 2x4, and denoting f̂ 4

the restriction of f 4 to x3 = 2x4, we obtain

−6c0 − x4
df̂4

dx4
= −4f̂4, which implies f̂4 = 3

2
c0 + c1x

4
4 with c1a constant.

Then, from lemma 4, we get f 4 = 3c0/2 + c1x
4
4 + (x3 − 2x4)f6 for some formal series

f6 = f6(x3, x4). The two equations for f 4 on x3 = x4 = 0 imply that c0 = 0 and thus
f 4 = x3f5. Now, we will prove that f 4 = 0. To do it, we assume f 4 �= 0 and we will reach a
contradiction. We write f 4 = xm

3 h where m � 1 and h is a formal series which is not divisible
by x3 and f 4 satisfies (31) with c0 = 0, i.e., after dividing by xm

3

−x3x4
∂h

∂x3
− (x4 − x3)

2 ∂h

∂x4
= ((2 + m)x4 − 3x3)h. (32)

Then, if we write h = ∑
l�0 hlx

l
3, with hl = hl(x4) a formal series, then h0 �= 0 satisfies (32)

evaluated on x3 = 0, i.e.,

−x2
4

dh0

dx4
= (2 + m)x4h0.

Its general solution is h0 = c2
/
xm+2

4 . Taking into account that h0 is a formal series, implies
h0 = 0, a contradiction.

In short, f 4 = 0 which by lemma 4 implies that f4 = F̂ f7 for some formal series
f7 = f7(x3, x4, x5). Then, from (30) and since c0 = 0, we get

g0 = F̂


x3(x3 − x4)

∑
k�1

ckF̂
k−1 + x2

5f7


 ,

a contradiction with the fact that g0 is not divisible by F̂ .

Case 2. g0 is divisible by F̂ . In this case we write g0 = F̂ mh for some m � 1 and h = h(x3, x4)

a formal series not divisible by F̂ . Since F̂ is a first integral of system (9) restricted to x6 = 0,
we have that h satisfies the same equation as g0. Then, proceeding as in case 1, we reach a
contradiction. �

Proof of lemma 14. We decompose h0 in formal series in the variable x2 as

h0 =
∑
k�0

gkx
k
2 , gk = gk(x3, x4, x5, x6) are formal series. (33)

Then, we will prove by induction that

gk = 0, for k � 0. (34)

Clearly g0 satisfies (26) restricted to x2 = 0, that is, (27). By lemma 15, we get that
g0 = 0 and (34) is proved for k = 0. Now, we assume that the claim (34) is true for
k = 0, . . . , m − 1 (m � 1) and we will prove it for k = m. By the induction hypothesis, we
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get that gm + gm+1x2 + gm+2x
2
2 + · · · satisfies (26) replacing h0 (after dividing by xm

2 ). Taking
x2 = 0 we obtain that gm satisfies (27). Then, from lemma 15, we get that gm = 0, and prove
the claim (34) for k = m. Hence, the claim (34) is proved. Therefore, using (33) we get that
h0 = 0 and finish the proof of the lemma. �

Proof of theorem 1. Let g be a formal series first integral of system (4). If g is a formal series
first integral in the variables F and G the theorem is proved. So, we can assume that g is not a
formal series in the variables F and G. Moreover, without loss of generality the formal series
g has no independent term. We also can assume that g is not divisible by any formal series
T depending only on F and G; otherwise if T (F,G) divides g, then we can take g/T (F,G)

instead of g a new first integral.
By proposition 5, we have that

f = (g · τ(g)) · σ(g · τ(g)) (35)

is also a first integral of system (4) invariant by τ and σ . We first prove that f is a formal
series in the variables F and G. From proposition 13 and lemma 14, we have that f can be
written as

f =
∑
k,l�0

ck,lG
kF l + x1h, h =

∑
k�1

hkx
k
1 , hk = hk(x2, x3, x4, x5, x6),

where hk are formal series in their variables. Since f,G and F are formal series first integrals
of system (4), we obtain that the coefficient of x2

1 in (7) provides the equality

[
(x4 − x3)x3 − 2x2

5

]∂h1

∂x3
+

[−(x4 − x3)
2 + sx2

6

]∂h1

∂x4

+ [sx2x6 + (x3 − x4)x5]
∂h1

∂x5
+ [2x2x5 − x3x6]

∂h1

∂x6
= −2x3h1.

In a similar way, the coefficient of x3
1 in (7) provides the equality

x5
∂h1

∂x2
+

[
(x4 − x3)x3 − 2x2

5

]∂h2

∂x3
+

[−(x4 − x3)
2 + sx2

6

]∂h2

∂x4

+ [sx2x6 + (x3 − x4)x5]
∂h2

∂x5
+ [2x2x5 − x3x6]

∂h2

∂x6
= −3x3h2.

Finally, the coefficient of xk+1
1 in (7) with k � 3 provides the equality

x5
∂hk−1

∂x2
+

[
(x4 − x3)x3 − 2x2

5

]∂hk

∂x3
+

[−(x4 − x3)
2 + sx2

6

]∂hk

∂x4
− as

∂hk−2

∂x4

+ [sx2x6 + (x3 − x4)x5]
∂hk

∂x5
+ [2x2x5 − x3x6]

∂hk

∂x6
= −(k + 1)x3hk. (36)

We claim that

hk = 0 for k � 1. (37)

Clearly h1 satisfies equation (26) with h0 replaced by h1 and the right-hand side replaced by
−2x3h1. The arguments used for proving that h0 = 0 in lemma 14 imply that h1 = 0 and
finish the proof of (37) for k = 1. Now, assume (37) is proved for k = 1, . . . , m − 1 (m � 2)

and we want to prove it for k = m. By the induction hypothesis equation (36) with k = m

becomes (26) with h0 replaced by hm and the right-hand side replaced by −(m + 1)x3hm.
Then, the same arguments used for proving that h0 = 0 in lemma 14 imply that hm = 0 and



Formal and analytic first integrals of the EYM equations 8167

proves (37) for k = m. Hence, by induction arguments, the claim (37) is proved for k � 1.
Therefore, h = 0 and thus,

f =
∑
k+l>0

ck,lG
kF l. (38)

Hence, from (35) we get that f must be reducible, that is, there exist formal series
T = T (F,G) and T1 = T1(F,G) such that f = T (F,G)T1(F,G). Furthermore, we
can assume that T is irreducible. Then, from (35) we get that T (F,G) divides g · τ(g) or
σ(g · τ(g)). In the first case, we also can assume that divides τ(g); otherwise we reach a
contradiction with the assumptions on g. However, if T (F,G) divides τ(g), then τ(g) =
T (F,G)T2 for some formal series T2 = T2(x1, x2, x3, x4, x5, x6), and thus

g = τ 2(g) = τ(T (F,G))τ(T2),

a contradiction with the assumptions on g.
Now, we assume that T (F,G) divides σ(g · τ(σ )). With similar arguments to those used

for the case in which T (F,G) divides g · τ(σ ), we reach a contradiction with the assumptions
on g. So, the theorem is proved. �

Proof of theorem 2. Since F and G are analytic first integrals of system (4), it is clear that
any analytic function in a neighbourhood of zero in the variables F and G is an analytic first
integral of system (4) in a neighbourhood of zero. To prove that these are the only ones, we
proceed by contradiction. Assume that g is an analytic first integral of system (4) which is
not a function of F,G. Then, there exists a neighbourhood U ⊂ R

6 of the origin such that
g|U is a nontrivial first integral of system (4). Clearly, g|U can be written as a formal series
which turns out to be convergent. Hence, in U, g is a formal series first integral which cannot
be written as a formal series in the variables F and G, a contradiction with theorem 1. Thus,
theorem 2 is proved. �
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[2] Breitenlohner P, Maison D and Forgács P 2005 Classification of static, spherically symmetric solutions of the
Einstein–Yang–Mills theory with positive cosmological constant Preprint

[3] Breitenlohner P, Maison D and Lavrelashvili G 2004 Non-Abelian gravitating solitons with negative
cosmological constant Class. Quantum Grav. 21 1667–83

[4] Cushman R and Sniatycki J 1995 Local integrability of the mixmaster model Rep. Math. Phys. 36 75–89
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